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Two-component KP hierarchy and the classical 
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Tyne NE1 7RU, U K  
$ Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK 

Received 15 November 1989 

Abstract. It has been shown that solutions to the K P  equation and other equations in the 
K P  hierarchy take a Wronskian form. We extend these ideas to two-component Wronskians 
and the Hirota equations which they satisfy. By a reduction procedure we show how 
dependence on some of the variables can be removed and look in detail at the classical 
Boussinesq equation and its modifications and show how these equations fit into the 
two-component K P  hierarchy. 

1. Introduction 

Hirota’s method of solving nonlinear evolution equations has proved very successful 
in producing N-soliton solutions. One of the most widely studied equations is the 
Kadomtsev-Petviashvili ( KP) equation [ 11 

( u I + 6 u u , + u , , , ) x + 3 u y ~ = 0 .  (1.1) 

U = 2a:[lnf] 

Using a transformation of variables 

this equation can be expressed in Hirota bilinear form and an N-soliton solution can 
be found. In the early 1980s work was done on categorizing the Hirota equations in 
the K P  hierarchy and associated hierarchies [2-41. The solutions to the equations are 
written down as the so-called ‘T-functions’. In the paper of Jimbo and Miwa [2] the 
two-component KP hierarchy is discussed. Here we shall set up a formalism in which 
7-functions for the two-component KP hierarchy are expressed as ‘two-component 
Wronskians’ and Hirota equations of this hierarchy-of which a partial list appears 
in [2]-are obtained as vanishing determinants analogous to the Plucker relation of 
the single-component hierarchy [3-51. 

We pay particular attention to the classical Boussinesq equation and its 
modifications. A derivation using the theory of water waves has been given by Whitham 
[6]. Using a suitable transformation of variables, this equation can be written in bilinear 
form and by using a rather unusual limiting procedure called the ‘pq  = 0’ reduction; 
Hirota could relate the classical Boussinesq equation to equations of the KP and 
modified KP hierarchies [7,8]. A more direct route for obtaining solutions of this 
equation can be made by fitting it into the two-component hierarchy of Jimbo and Miwa. 
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In addition to the Boussinesq equation, there exists a first modification, obtained 
from the original equation by a Miura transformation and also a second modification 
obtained from a further Miura transformation [9, lo]. By careful choice of transforma- 
tion we have been able to show that these systems are also part of the two-component 
KP hierarchy. 

2. Wronskian and two-component Wronskian determinants 

2.1. Wronskians 

We will discuss the properties of certain Wronskian determinants and the Hirota 
equations that they satisfy. We have stated these properties in a form that will enable 
us to show how some familiar ideas may be extended in a straightforward way to the 
two-component case. Let x = (x, , x2, . . . ) be a sequence of independent variables and, 
for i = 1 , .  . . , N ,  let cp,(x), be a set of functions depending on the sequence x and 
satisfying the linear partial differential equations 

a .  ]PI I (2.1) 

where a, is the partial xj-derivative for j E N and a = a,. For p E Z, we denote by ( p p ( x )  
the pth x,-derivative of the column vector ( c p l ,  p2,.  . . , ( P ~ ) ~ .  If p < O  then ( p p ( x )  has 
only a formal interpretation as a vector whose (-p)th x,-derivative is (p(x). 

Now consider the N x ( N +  k )  matrix formed from N +  k column vectors ( p p ( x ) :  

(2.2) M f ( x )  = ((pa”, (ps+l,. . . 9 vs+N+k-l  ). 

T,(x) = det(Ms(x)). (2.3) 

This is a Wronskian determinant of the N functions vi. Notice that this definition is 
such that by taking arcpi ( i  = 1, , . . , N) in (2.1) the labelling is shifted so that T~ becomes 
T ~ + ~ .  The effect of this is that the precise labelling is not crucial, it is the relative 
labelling of the 7-functions appearing in a particular expression that is important. This 
fact is used several times below. 

Now let x’= (x i ,  x i , .  . . ) be a second sequence of independent variables. When 
k ,  + k2 = 0 the determinant 

If k = 0 then we drop the superscript on M,k(x) and we may define the 7-function 

(2.4) 

is well defined, and without loss of generality we assume that k ,  s k 2 .  If kl = k2 (=O) 
then 

A:;:s2(x, x’) = 7S,(X)TS2(X’) (2.5) 

AJ,Yk(x, x’) = 0. (2.6) 

and otherwise, for k > 0, 

It may be shown that provided sI - s2 G 1 and k > 0, the expansion of 

(2.7) 
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by its N x N minors may be written in the form 

H ( D , ,  D 2 , .  . . ) T ~ ] ( X )  - T ~ ~ ( x ) =  H(a,-a; ,  a,-&, . . . ) 7 s , ( ~ ) ~ s 2 ( ~ ’ ) / x = x = 0  (2.8) 

where H is a polynomial. That is, it is a Hirota equation [ 1 1 1  that is satisfied by the 
Wronskian determinants (2.3). This is but a special case of a result [12] which is most 
conveniently expressed in terms of a generalization of the Hirota derivatives D,.  

Define operators 6, for i E N  by 

(2.9) k k  
p(fiI, 6,, . . . )A;~:;~(x,x)= ~ ( a , - a : , a , - a ; ,  . . . ) A ; ~ , ; J X , X O / ~ = ~  = o  
P a polynomial, cf (2.8). By virtue of (2.5), this definition coincides precisely with 
that of Hirota derivatives, (2.8), when k = 0 .  We have that for any polynomial P, 
( s 1 - s 2 6 1  and k > 0 ) ,  

P ( 6 , ,  GZ,. . . )AL,Y:(x, X )  = H ( D l ,  D 2 , .  . . ) T ~ ~ ( x )  - T ~ * ( X )  = 0. (2.10) 

The left-hand side of (2.10) vanishes because it is a linear combination of determinants 
similar to (2.7). (We note that it seems that the restriction on s1 and s2 may be removed 
if one introduces a second sequence of ‘negative weight’ variables y such that 

but this issue will not be pursued further here.) 
As a familiar example, we have the Hirota form of the KP equation 

A i , $ 2 ( ~ , ~ ) =  k&(D:+3D:-4D3D1)70* 70=0 (2.11) 

A;,:.l(x,x)= * ~ ( D ; + D , ) T ~ *  T ~ = O  (2.12) 

with x1 = x, x2 = y and x3 = -4t [ 13,141 and 

~ , , A , ~ ’ ( x , x ) =  * ~ ( D ~ - 3 D , D l - 2 D 3 ) ~ 0  * 71‘0 (2.13) 

which together constitute the Hirota form of a modified KP equation. The sign in each 
of the above equations is determined by the parity of N and, since the right-hand side 
is zero in each case, is of no significance. The Hirota equations generated in this way 
make up the K P  and modified K P  hierarchies [2,4]. 

Often one wishes to consider 7-function which depend only on a subsequence of 
x. Such 7-functions do not in general satisfy the Hirota equations obtained by omitting 
the Hirota derivatives corresponding to the variables not present in this subsequence. 
Rather, this reduction process is carried out by making an appropriate choice of the 
functions cp, satisfying (2.1) which result in the 7-function being dependent only on 
the required subsequence. Here we will only be concerned with the case where we 
wish to have 7-functions dependent only on odd-index variables. This corresponds to 
the ‘A ,  to A‘,”’ reduction described in Jimbo and Miwa [2]. We shall describe how 
this reduction may be achieved for soliton-type solutions. 

For i = 1 , .  . . , N let 

where 

(2.14) 

(2.15) 
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and a,, PI,  p I  and q1 are arbitrary constants. Clearly this choice of the cp, is compatible 
with (2.1). For each i = 1 , .  . . , N take q, = -pI  and so 

c~i (x)  =exP( t (xe ,pc) ) [~ i  ex~(S(xO,pi))+Pz ex~(-5(xO,pr))l  

where x, (respectively x,) is obtained from x by omitting xJ for each odd (respectively 
even) j .  As a result of this we have 

~ s ( x )  = n(xe)T3(xo) (2.16) 

where 

(2.17) 

does not depend on the subscript s. Any Hirota equation (2.8) may be written as 

(2.18) 

where HE and H i  are polynomials in the odd and even Hirota derivatives, respectively, 
and M is the number of terms in the polynomial. For the reduced 7-function (2.16) 
we have 

1 (HOk(D1 7 D3,. . * h r , ( x o )  * ~sz(xo))(Hek(D2, Dq,. . . ) r ( x e )  * n ( x e ) )  = O  

and because of the particular form of n(x,), whenever the degree of HE > 0 

M 
(2.19) 

k = l  

HE(D2, Dq,. . . )T(x,) T ( x , ) = O .  (2.20) 

H(DI, 0, D3r 0, D5,. . . )7s1(xo) * 7s2(xo) = o .  
Hence the Hirota equation (2.8) for the reduced 7-functions (2.14) is 

(2.21) 

The reduction is thus achieved by choosing the cpl as in (2.14), replacing T ( X )  with 
T, (x , )  and DZk with 0. Notice that these reduced 7-functions have the property 

(2.22) 

so that there are just two essentially different reduced 7-functions ~ ~ ( x , )  and ~ ~ ( x , )  in 
the sense that any Hirota equation involving reduced 7-functions T~ and 7, may always 
be rewritten in terms of 7o or T~ and T ] ,  depending on the parity of s and t .  

2.2. Two-component Wronskians 

The above notions will now be extended to determinants containing two blocks of 
columns depending on different sets of variables. Each block will consist of columns 
obtained by differentiating its first column and for this reason we call such determinants 
two-component Wronskians. 

For j = 1, 2, let xi”  = ( x y ’ ,  x y ’ ,  . . . ) be sequences of independent variables and, 
for 1 s i s N ‘ ” +  N‘” = N, let plJ’(x‘’’) be sets of functions satisfying 

(2.23) 
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where 3;) denotes the xk) derivative and 3 ' J ' = " , J '  (cf (2.1)). In analogy with the 
single-component case, p ( J ) k  is the kth xp' derivative of the column vector 
(cpp), . . . , cp!2,')T and define the N x ( N  + k + 1) matrix 

( 2 ) " \ 1 2 ) ,  1 - 1  

; p121' 1 (2.24) 
MkJ(x"'; p) = ($p' ( , , y * \ ~ ~ ) + & - l  

,,.',P , * * * , p  

For 1 = -k we may define the two-component r-function 

7:;Lk = det(M;;Lk) (2.25) 

which is a two-component Wronskian determinant. Here and throughout we use the 
semi-colon to separate the subscripts and superscripts etc to indicate parts referring 
to the different components. 

The determinants, 
k .k , I  . f 2 ( x ( 1 ) ,  x i ( l l .  x ( 2 )  x L 2 ) )  

As: &,if2 3 ,  

(2.26) 

may be defined if k, + 1, + k2 + l2 = 0 where we take k, + 1, 6 k2 + 1,. Furthermore, deter- 
minants such as (2.26) give rise to Hirota equations amongst the 7-functions T : ; ; ~  in 
much the same way as described for the single-component case. For k,  + I ,  = k, + l2  
the left-hand side of (2.26) is a product of 7-functions, and if k, + I ,  < k2+ 1 2 ,  s1 - s2 s 1 
and t ,  - t 2 s  1, for any polynomial P 

P(f$l) cy, .  . . ; 6 ( 2 )  $2) )A k , , k , ,  I 1 . I 2 (  1 j ,  1 ). , x ( 2  1 , x ' ~ ) )  = 0 (2.27) 
I ,  1 ,  2 r . e .  ~ 1 . ~ 2 . ~ 1 . ~ 2  

is a Hirota equation involving the 7-functions (2.25). The operators 6>IJ', are an obvious 
two-component extension of the generalized Hirota derivatives defined in (2.9). The 
big difference between this case and the single-component case is the fact that, whereas 
(2.10) gives a Hirota equation involving at most two 7-functions, its analogue (2.27) 
may give one containing any number of different 7-functions. This inevitably leads to 
a much richer structure and wider variety of Hirota equations. 

The soliton system which plays the fundamental role, analogous to that which the 
KP equation plays for single-component Wronskians, is the Davey-Stewartson 
equations. Consider the following examples of (2.27): 

(2.28a) 

(2.286) 

( 2 . 2 8 ~ )  

together with those equations obtained by interchanging the components in (2.28a, b). 
Now perform the invertible change of independent variables, 

xi') = 2it xy)  -2it (2.29) 

let N ( 2 )  = N ( ' )  and choose cp12' to be the complex conjugate of cp:') for i = 1, .  . . , 2 N  
so that 7:;:" F(x, y ,  t )  is real and T&' = G(x, y, t )  and .;,$I= G*(x, y, t )  are complex 
conjugate. The Hirota equations (2.28) may then be written as 

AO,$,$,,O1*' = * [D:"+ D\1)2]7::: . 7;;;' = 0 

A;,$,k,F = & [ D - D ( 1 j 2  0 
1 ] o;o ' TO,;' = o  

l , I , - l 3 1  - *(D{')D(2),.00 1 O:O T:$ - 27&l 7,;') = 0 Ao,o,o.o - 

x ( l )  , = x + i y  I - -x - iy  

(iD,+D:-D:)G* F=O 

(D;+D:)F* F = 8 G G *  

(2.30a) 

(2.30b) 
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which constitute the Hirota form of the Davey-Stewartson equations [15], 

iu,  + U,, - uyy + 4uX - 8ul u12 = 0 

X X X  + Z y y  = 4 ( l ~ / 2 ) x x .  

(2.3 1 a )  

(2.3 1 b )  

The process of reduction for two-component Wronskians is very similar to the 
single-component case. The 7-functions that one obtains after this reduction depend 
on just one sequence of variables rather than one for each component. To achieve this 
we again perform a non-singular change of variables reminiscent of (2.29), for k E N, 

(2.32) and xi2) = ( - 1) k f ’  (xk - yk) x ( l )  = 
k Xk+yk 

so that 

Dx, ( l 1 - L  - 2 (  D Xk + D  ) and ~ j ; ‘ , ’ = f ( - i ) ~ + ’ ( ~ ~ , - ~ , , )  (2.33) 

and thereby the 7-functions become dependent on the two sequences x and y. For 
soliton-type solutions one takes 

cp!” = ai exp(t(x“’, pi) and CP!” = Pi exp(t(x(”, qi)) (2.34) 

( i  = 1, .  . . , N ( ” +  N(’)  and if one chooses qi = -pi then 

CP!”= ai e x ~ ( t ( x ,  pi)) ~ x P ( ~ ( Y ,  pi)) 

and 

and so 

(2.37) 

As in the single-component case, the y dependence is effectively eliminated because 
it only appears in an exponential factor. Also, the reduced 7-functions are related by 

(2.38) 

The reduction is thus achieved by replacing both x(l)  and x‘’’ with x in the 7-functions, 
and replacing DVk’ with tD,, and DL:) with t ( - l )kt lDxk in the equations they satisfy. 

3. The classical Boussinesq equation and its modifications 

The classical Boussinesq equation [7,8] may be written in the form 

U, = ((1 + u)u)x + U,, U, = (U + u2/2),. 

By introducing the variables T and 7’ 

U = -1 +2(ln T T ‘ ) ,  U = 2(ln T’/T) ,  

the equations (3.1) can be written in terms of Hirota derivatives as 

(D: + D , ) T -  7’ = o (D,D, + D:)T. 7’ = 0. 
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In addition to the classical Boussinesq equations there are associated systems of 
equations also describing dispersive water waves [lo]. These we refer to as modified 
forms of the classical Boussinesq equations. 

The first modified form of the classical Boussinesq system is given by [8,9] 

a, = (U, - U2+2U6), 77, = - (Ox  - 62 + 2t.U), (3.4) 
which are related to (3.1) by a Miura transformation 

U = 2( 77 - U) ( 1 + U )  = -2( + 6, + 2 Ut.). (3.5) 

(3.6a) 

(3.6b) 

The second modified form [9] is 

1 = - q =  2 U,, + U'J, - li2d), 

6, = f (  fiCx + cc2 - 46),. 

Again these are related to the previous system by a Miura transformation 

a = f u' - f ( c, + 66) (3.7a) 

E=$;+'( 4 u,+fd) .  = (3.7b) 
We shall show how each of these systems is reduced to Hirota form and also how the 
Miura transformations are satisfied. 

The dependent variables required turn out to be two-component Wronskians, and 
to this end shall introduce the following notation: 

F = r::: 

G = rAi0' 
G* = ,.;;b;' G*(l'= 

F'" = ~ y : y  
G(lj = .,.;:;I 

T I ; ]  

f = 7011 1. -1  f * = .;;b;' 
0.0 * - 0 ;o  8 = 7110 g - 7 0 ; '  

with 

A*=f*:g A'* = Ef * i g* (3.9) 
where E = +1. As might be expected, this number of r-functions satisfy numerous 
Hirota equations, even if we restrict ourselves to a low order. In appendix 1 we have 
listed the equations we require and also how they arise from (2.27). Using the reduction 
procedure in section 2, these equations reduce to 

A+A'* + A-A-* = 2FF") ( 3 . 1 0 ~ )  

D,F* A* = F2GA'* (3.10b) 
D,F* A** = 72G*A= (3.1 Oc) 
D,A' * A- = 4G'"F (3.1 Od ) 
D,A** . A-* = 4G'')*F (3.10e) 

D:F* F = 8GG* (3.10f) 
(D,  + D:)F* A* = 0 (3.1 Og) 
(D,  - D:)F- A'* = 0 (3.10h) 
(D,  - D:)A' * A-* = 0 (3.10i) 
D,(D, -D:)A'-A-*=O (3.1 O j )  

where x = xl and t = x2/2. 
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Starting with the most complicated system (3.6) we shall carry out a change of 
variables 

(3.11) 

(3.12) 

where in (3.11) we could have used a<[ln( F2/A*A-*)] since F and F(” are proportional 
by virtue of (2.38), but we write 17 in the way indicated to achieve symmetry with (3.12). 

To achieve the bilinearization we utilize a subsidiary result which will be used 
again in considering the Miura transformation (see appendix 2): 

(3.13) 

Now let us consider equation (3.6a), using equation (3.13) and (3.10J g) we can show 
that ( 3 . 6 ~ )  is satisfied, i.e. 

6, + db = 2a,[ln(A+/A-*)]. 

D,( F* A’) + D,(  F e  A-*) [ FA’ F A-* 
17, = -a, 

= -l(= 2 U,, + u,U-;2b)x = = 

as required. Using (3.13) again and some of the other equations of (3.10) the bilineari- 
zation of (3.66) can also be achieved. By noting the Hirota equations used in the 
bilinearization process we obtain the Hirota form of (3.6) 
D,F- A* = +2GA’* 
D,A+* . A-* = 4G‘”*F 

(D,+D:)F* A*=O (D,  -D:)F- A’*=O. 

D,F- A** = 72G*A’ D,A+ * A- = 4G‘”F 
A‘A+* + A-A-* = 2FF‘” 

To obtain the change of variables appropriate to the bilinearization of (3.4), we use 
the Miura transformation (3.7). Using equation (3.13), equation ( 3 . 7 ~ )  gives 

ii = a,[ln( F /A+)]  

B = a,[ln(F/A-*)I. 

and (3.7b) gives 

Using a similar process to the bilinearization of (3.6) described above, we obtain the 
Hirota form of (3.4) 

( D , + D f ) F *  A’= 0 
D,F. A t =  -2GA-* 

(D,  - Df ) F * A-* = 0 

D,F* A-* = 2G*A- D f F .  F = 8GG*. 
The Muira transformation (3.5) from system (3.4) to (3.1) gives 

This is precisely the same form as (3.2) with 7 replaced by A-* and 7’ replaced by 
A+. Thus the Hirota form is given by 

U + 1 = 2(ln A’A-*),, U = 2(ln A+/A-*),. 

(D: - D,)A+ * A-* = 0 D,(D:-D,)A’* A-*=O. 

Hence we have shown that the three systems (3.1), (3.4) and (3.6) are solved by 
two-component (reduced) Wronskians. In the following section we compare this with 
the approach of Hirota to the classical Boussinesq equation (3.1) via a ‘pq = 0’ reduction 
of the single-component KP hierarchy. 
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4. The classical Boussinesq equation 

As we have seen in section 3, the Boussinesq equations can be written in terms of 
Hirota bilinear forms: 

(D; + D , ) T .  T ’ =  o (D,D, + ~ 1 ) ~ s  T’=o.  (4.1) 

In Hirota’s paper [7] these equations are related to the class of equations discussed 
by Jimbo and Miwa [2] and referred to as the modified K P  hierarchy. 

The first two equations of this hierarchy are 

( ~ f ,  + D,)  T a T’ = o (4.3) 

(D:-4D, - ~ D , D , ) T *  T ’ = O .  (4.4) 

Hirota [7,8] has shown that, by using the ‘ p q  = C’ reduction (i.e., assuming p,q, is 
independent of j or q, = C / p , ) ,  (4.3) and (4.4) become 

(D?+D*)T.  T ‘ = O  (4.5) 

(D: + D1 Dz + 4CD1) T * T‘ = 0 

(D3+ DID,+ C D , ) T *  T’= 0 

where x = x l ,  t = x 2  and t ‘ = x 3 .  
In the limit C + 0 (4.5) and (4.6) reduce to the classical Boussinesq equations. 

Wronskian determinants [ 16, 171. 
The n-soliton solutions to equations (4.3) and (4.4) can be expressed in terms of 

7 = T t (  X) T’ = T ? ( X )  (4.8) 

using the notation of section 2. The functions in the determinants are given by (2.14). 
It may be shown that 

( D ~ + D , D , + 4 C D l ) ~ *  T’= 4(D3 + DID,+ C D l ) r  T’ 

Using the reduction p iqz  = C in the form 

the determinantal expression on the right-hand side of equation (4.9) can be shown 
to be zero after row and column manipulations. 

Note that to relate with earlier work on the Wronskian method, the sign of p I  must 
be changed. 

If we choose a, = ( P , ) - ~  and P I  = ( q l ) - r  then this has the effect of shifting all the 
derivatives r places down so that r and T‘ now take the form 

(4.10) 

We wish to examine T and r’ in the limit C + 0. To do this we write q1 = C / p i  and 
note that the dominant behaviour in cpI  comes from the inverse powers of the q, when 

t o  
T = T?, T = T- ,+i .  



4802 N C Freeman, C R Gilson and J J C Nimmo 

j < 0, whereas for j Z- 0 it is the terms involving pt which contribute. Hence for C small 

where 

( M  I v  ) = p : - J + I  

( M J , ,  =a’-’[exp(t(x,p,))+ 11 
(W), ,  =P:-’ 
(MJY =a’-’[exp(t(x,p,))+ 11 
From (3.2) it is clear that we may scale r and T’ independently by constant factors, 
and simultaneously by the exponential of a linear function of x = xl, without changing 
the solution of (3.1). Thus, in the C = 0 limit, by multiplying T and T‘ each by 
exp( - f X : = l  t ( x , p , ) )  and certain constants, we find that 

r = r~,:l(fx; fx) * r::y(fx; fx) 
where the signs depend on the parity of r. The factors of $ in the argument of the 
r-functions correspond to those which appear as a consequence of the reduction 
process described in section 2. 

Hence by comparison with the results of section 3, we have shown that the ‘ p q  = 0’ 
reduction in the single-component hierarchy exactly corresponds to the standard 
‘ p  = -q’ reduction of the two-component hierarchy. 

det[M, i M4] r t 5  c - r ( r - l j / 2  det[M, i M2] r~ c - r l r + l ) I Z  

for i = l ,  . . . ,  n ; j = l ,  . . . ,  r 
for i = l ,  . . . ,  n ; j = l ,  . . . ,  n - r  
for i = l ,  . . . ,  n : j = l ,  . . . ,  r - 1  
for i = l ,  . . . ,  n ; j = l ,  . . . ,  n - r + 1 .  

r’ = r;;; l ( fx;  i x )  T ry;:(+x; tx )  

Appendix 1 
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Appendix 2 

Here we establish (3.13): 

E , +  617 = 2d,[ln(A'/A-*)]. 

By definitions (3.11) and (3.12) 

(A + A'* - A-A-*) 
( FF'" 

6, + if = 

Using (3.10d, e )  we get 

and by (3.10b, c ) ,  and since F"'/F= G"'/G, we get 

= 2d,([ln(F/A-*) - ln(F/A+)])  

= 2d,[ln( A+/A-*)] 

as required. 
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